A mean value theorem for the Diophantine equation axy−x−y=n
نویسندگان
چکیده
منابع مشابه
The First Mean Value Theorem for Integrals
For simplicity, we use the following convention: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, and E is an element of S. One can prove the following three propositions: (1) If for every element x of X such that x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative. (2) For every set Y and for every partial function f from...
متن کاملTHUE ’ S THEOREM AND THE DIOPHANTINE EQUATION x 2 − Dy
A constructive version of a theorem of Thue is used to provide representations of certain integers as x2 −Dy2, where D = 2, 3, 5, 6, 7.
متن کاملTHUE ’ S THEOREM AND THE DIOPHANTINE EQUATION x 2 −
A constructive version of a theorem of Thue is used to provide representations of certain integers as x2 −Dy2, where D = 2, 3, 5, 6, 7.
متن کاملThe Mean Value Theorem and Its Consequences
The point (M,f(M)) is called an absolute maximum of f if f(x) ≤ f(M) for every x in the domain of f . The point (m, f(m)) is called an absolute minimum of f if f(x) ≥ f(m) for every x in the domain of f . More than one absolute maximum or minimum may exist. For example, if f(x) = |x| for x ∈ [−1, 1] then f(x) ≤ 1 and there are absolute maxima at (1, 1) and at (−1, 1), but only one absolute mini...
متن کاملA mean value theorem for systems of integrals
Abstract. More than a century ago, G. Kowalewski stated that for each n continuous functions on a compact interval [a, b], there exists an n-point quadrature rule (with respect to Lebesgue measure on [a, b]), which is exact for given functions. Here we generalize this result to continuous functions with an arbitrary positive and finite measure on an arbitrary interval. The proof relies on a ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica Hungarica
سال: 2011
ISSN: 0236-5294,1588-2632
DOI: 10.1007/s10474-011-0164-5